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Abstract

An efficient numerical approach for the design of optimal aerodynamic shapes is presented in this paper.
The objective of any optimization problem is to find the optimum of a cost function subject to a certain
state equation (governing equation of the flow field) and certain side constraints. As in classical optimal
control methods,the present approach introduces a costatevariable (Lagrange multiplier) to evaluate the
gradient of the cost function. High efficiency in reaching the optimum solution is achieved by using a
multigrid technique and updating the shapein a hierarchical manner such that smooth (low-frequency)
changes are done separately from high-frequency changes. Thus, the design variables are changed on a
grid where their changesproduce nonsmooth (high-frequency) perturbations that can be damped efficiently
by the multigrid. The cost of solving the optimization problem is approximately two to three times the
cost of the equivalent analysis problem.

Nomenclature

F cost function
fk kth shapefunction
M1 free-stream Mach number
n unit normal
t unit tangent
U1 free-stream velocity

yU;L y-coordinate of the upper and lower surface of the
airfoil

� amplitudeof shape functions (design variables)
~� direction of change of�

�
U;L

k
components of� (upper and lower surface
amplitudesof the kth shapefunction)

� circulation

 ratio of specific heats
" magnitude of change of�
� angle of attack
� � correctedfor Mach number
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� angularpositionof a far-field location
� Lagrange multiplier
�k kth component of the gradient ofF
� density
� full velocity potential
�0 target potential
� coefficientof the delta function

I. Introduction

The aerodynamic designer seeks an airplane shape that
achieves the best aerodynamic performance while taking into
account the trade-offs with other disciplines, namely, struc-
tures,propulsion,stability, and control. Although significant
progress has been made in developing computational meth-
ods for fluid flow analysis, the methods for the design and
optimizationof aircraftconfigurationarestill in their infancy.
Among the many techniques that have been developed, the
inversedesignmethod1– 6 is perhapsthe most widely used.
This method is severely restrictive because its depends on
the experienceand knowledgeof the designer to establish
desirable velocity or pressure distributions. In addition, the
method does not lend itself to the imposition of constraints.
The next most popular approach is what we refer to as the
“loosely coupled optimization (LCO).” In this approach, the
analysis problem is solved many times to find the gradient
of the cost function with finite differences. This gradient is
used by a “black box” optimizer to find the best change to the
design variables. The computational cost of this brute-force
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method is usually exorbitant. Examples of this approach are
found in Refs. 7–10. The LCO method can be improved
by analyticallyevaluatingthe sensitivityderivativesthat are
neededto updatethe design variables.11 Usually, this re-
quiresthe inversionof an extremelylargematrix. For three-
dimensionalproblems,the sizeof this matrix can renderthe
methodimpractical with current computer technology. In the
past several years, the adjoint variable method has gained
popularity in the area of aerodynamic design. This method,
which we refer to as “tightly coupled optimization (TCO),”
requiresthesolutionof anadjointproblem,in addition to the
analysisproblem,to evaluatethe gradientof the cost func-
tion. The complexityof the adjoint problem is equivalent to
that of the analysisproblem. However,the adjoint problem,
alongwith the analysisproblem,mustbe solvedmany times
to reachconvergence.This approach has been discussed in
Refs.12 and 13. Although the efficiency of TCO is much
higher than that of LCO, this procedurecan also become
prohibitively expensivefor practicalaerodynamic design and
optimization problems.

The One-Shotmethod14,15 overcomes the unacceptable
cost of the existing designand optimization procedures.It
brings the cost of design and optimization to the same order as
that of a singleanalysis.High performanceis achievedboth
by exploitingthepropertyof thepartialdifferentialequations
(associated with the scales (frequency) of the errors) which
governthe physicsof the flow andby the efficient damping
of high-frequency error components with multigrid. Consider
the subsonic flow over an airfoil profile. The change in the
shape of the profile of a given wavelength produces changes
of the same wavelength in the solution. These changes
penetrateinto the flow field only up to a distancethat is
proportional to the wavelength of the perturbation. Thus,
while the high-frequencychangesin the shapeof the airfoil
producechangesin the solution that are of high frequency
and remain local to the neighborhood of the airfoil, the
smooth(low-frequency) changes in the shape produce smooth
changes to the solution and are global in nature. Typically,
any relaxation scheme quickly damps the high-frequency
componentsof the error on a grid. Multigrid efficiently
dampsthe whole spectrum of error components by relaxing
the governing equations on a sequence of grids of varying
resolution.

Therefore, the basic idea of theOne-Shotmethod is to
change the shape of the airfoil profile in a hierarchical manner
such that smoothchangesare made separately from high-
frequencychanges.Becauseeachof thesechangesinvolvesa
different scale, the governing equation of the flow field can be
solvedefficientlyongridsof appropriateresolution. Thus, the
flow field due to smooth changes in the shape of the airfoil is
solvedon coarsegrids,and the flow field due to increasingly
high-frequency shape changes is solved on increasingly fine
grids. This breaks the optimization procedure into a sequence
of suboptimization problems, each of a given scale; therefore,
the problem is well conditioned. The resulting optimization
procedure is very efficient because the work on a particular
scale is done on the appropriate grid. (Ill conditioning results

from working on many scales simultaneously.) TheOne-
Shot method is implemented within a full approximation
scheme(FAS) full multigrid (FMG) algorithm. The solution
processstartson the coarsest grid, where only the smooth
componentof the shapefunction is updated. This solution
is interpolatedto the next finest grid, where it serves as
an initial approximationof the solution on that grid. This
processis continueduntil the finest grid is reached. Thus,
smooth(low-frequency)shapesareupdatedon coarsegrids;
high-frequencyshapesareupdatedonfiner grids. The fine- to
coarse-gridtransfersaredesignedsuchthat the optimization
problemat eachgrid level is driven by the fine-grid residual.
The resulting algorithm has an estimated overall cost that
rangesfrom two to three times the cost of the analysis
problem.

The successfulapplicationof the One-Shotmethod to
the aerodynamicshapedesignproblemwas first reportedin
Ref. 15. The capabilityof the methodwasdemonstrated by
using the small-disturbance potential equation as the govern-
ing equation of the flow field. However, in that study, the
issueof updatingthegrid was avoided. In the present study,
the full potentialequationis usedasthe governing equation;
hence,thegrid mustbeupdatedastheshapechanges.In this
work, the adjoint equation and the corresponding gradient of
the cost function are derived. The solution procedure and
sometypical results are also presented.

II. Design of Optimal Airfoil Shapes

The design of optimal airfoil shapes is a constrained
minimization problem. The objective is to find the optimal
shape of the airfoil that will minimize a cost functionF
subjectto the stateequationof the flow field and the side
constraints.

The State Equations

The analysis problem, defined by the state equation,
consistsof finding the flow over a specified shape for a given
free-stream Mach number and angle of attack. In order to fo-
cus on the optimization procedure, the flow model considered
is the subsonic potential flow over an airfoil profile.

Consider the steady irrotational flow past a two-
dimensional airfoil.16,17 The governing equation of the flow
field, known as the full potential equation, is

div(�r�) = 0 (1)

The boundary condition on the airfoil is

r� �n = 0 (2)

At infinity, the boundary condition is

r� = U1 (3)
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Fig. 1. Computational domain.

For the Kutta condition, the circulation� around the airfoil
is such that

the velocity at the trailing edge is �nite and continuous
(4)

In these equations,� = �(x; y) is the full velocity potential,
� = �(�) is thedensity,n is the unit normal, andU1 is the
free-stream velocity. The density� is given by

� =

�
1 �


 � 1

2
M

2

1

�
jr�j

2
� 1

�� 1


�1

(5)

whereM1 is thefree-streamMachnumberand
 is theratio
of specific heats. If� is the angle of attack of the airfoil, then
the free-streamvelocity is given by

U1 = U1[cos(�)i+ sin(�)j] (6)

wherei andj are the unit vectors in thex andy directions,
respectively.

The Computational Domain

The computational domain is shown in Fig. 1. The
interior of the flow field is denoted by
; the upper and lower
surfaces of the airfoil are denoted byU andL, respectively.
The far-field boundary,located at a finite distance from the
airfoil (30 to 50 airfoil chord lengths)is denotedby O. To
impose the Kutta condition around the airfoil, an artificial
boundary or cut that begins at the airfoil and extends to the
far field is introduced.A jump in potential that is equal to�
is allowed across the cut. For convenience, this cut is chosen
to emanate from the trailing edge of the airfoil. The top and
bottom sides of the cut are denoted byT andB, respectively.
The jump across the cut can be written as

�
T
� �

B
= � (7)

The value of the� is determined by requiring that the
velocity perpendicular to the trailing edge bisector be equal to
0 at the trailing edge. A good approximation for� is given by

� = �
T
t:e: � �

B
t:e: (8)

wheret:e: refers to the trailing edge of the airfoil. To satisfy
mass conservation across the cut, derivatives of the potential
normal to the cut are requiredto be continuous.

At the far-field boundary, the circulation modifies the
velocity as follows:

r� � n = U1 � n+
�

2�
r� �n (9)

where
� = 2� � tan�1

�p
1 �M2

1
tan �

�
(10)

and� is the angularpositionof a far-field point. For conve-
nience,n is the unit normal on the boundary. The far-field
boundaryconditiongiven by (9) is consistent with the infin-
ity condition statedby (3).

The Design Variables

The airfoil is represented as follows:

y
U
=

KX
k=1

�
U
k fk(x)

(0 � x � 1)

y
L
=

KX
k=1

�
L
kfk(x)

(11)

where�Uk and�Lk are the amplitudes of the shape functionsfk
on the upperand lower surfacesof the airfoil, respectively.
The designvariables�k must be determinedto obtain the
optimal shape of the airfoil. Let� denote a vector whose
elements are the design variables. That is,

� =
h
�
U
1 ; �

U
2 ; :::;�

U
K; �

L
1 ; �

L
2 ; :::;�

L
K

iT
(12)

The functionality of the shape functions will be presented
later.

The Optimization Problem

The model problem chosen is the design of an airfoil
shape that can match a given target potential. Given a target
potentialdistribution�0 aroundan airfoil, the objectiveis to
find � that will minimize

F [�; �(�)] �

Z
U+L

(�� �0)
2
d� (13)

subject to the state equations, whered� (which is an element
of the airfoil) can be written as

d�
2
= dx

2
+ dy

2 (14)

Note that the choice of this particular cost function does not
make it an inverse-design problem. Unlike inverse-design
problems, the minimization is done over a finite number of
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design variables. This approach also can be used, for ex-
ample, to find the optimal shape of an airfoil that has the
minimum D=L (drag/lift) subject to geometric and aerody-
namic constraints.

To makethe presentationof the derivation of the ad-
joint equationssimple and easy to understand,the flow is
assumedto be incompressible(i.e., M1 = 0); therefore,
� = 1. In this case, the full potential equation reduces to the
Laplaceequation.Also, no sideconstraintsareconsideredin
this derivation. Therefore,the specificoptimizationproblem
consideredhere is

min
�;�

Z
U+L

(�� �0)
2
d� (15)

subject to

div(r�) = 0 in 
 (16a)

r� �n = 0 on the airfoil (16b)

r� �n = U1 �n+
�

2�
r��n in the far �eld (16c)

�
T
� �

B
= � along the cut (16d)

where� is given by (8).

The Minimization Process

At some initial�, any minimization process seeks to
find a descentdirection ~� and a step size " in which to
change� such that

F
�
� + " ~�; �+ "~�

�
� F (�; �) (17)

where"~� is the corresponding change in� that satisfies the
state equations. This process is repeated several times until
a minimum is reached.

The Descent Direction. A descent direction~� can be
determinedas follows. The Taylor series expansion ofF
about� and� can be written as

F
�
� + " ~�; �+ "~�

�
= F (�; �)+" ~�

T
r�F (�; �)+O

�
"
2
�

(18)
where

r�F �
@F

@�
+

�
d�

d�

�T
@F

@�
(19)

Equation (18) clearly shows that if

~� = �
r�F (�; �)

jr�F (�; �)j
(20)

then (17) is satisfied. Equality occurs in (17) at the minimum
whenr�F (�

�; ��) = 0, where�� is the optimum value of
the design variables and�� is the corresponding value of the
state variables that satisfies the state equations. Therefore,
to obtain the descent direction, the gradient ofF must be
evaluated.

The Step Size. The step size" is determined by a line
search.Theobjectiveof the line search is to find" such that


r�F

�
� + " ~�; � + "~�

�


2 is a minimum. That is,

@



r�F

�
� + " ~�; � + "~�

�


2
@"

= 0 (21)

By expandingin Taylor’s series,taking the derivative with
respectto ", and neglectingthe O

�
"2
�

terms, the step size
becomes

" = �
[r�F (�; �)]

T
r
2
�F (�; �)~�

~�T [r2
�F (�; �)]

T
r2

�F (�; �) ~�
(22)

where r2
�F is a symmetric matrix and is often referred

to as the Hessian. Note thatr2
�F includes the variation

with respect to�. Computation of the Hessian is expensive;
the cost is proportional to the number of design variables.
However, r2

�F ~� can be evaluated relatively easily with
finite differencesas follows:

r
2
�F (�; �) ~� =

r�F
�
� + �" ~�; � + �"~�

�
�r�F (�; �)

�"
(23)

where �" is a trial perturbation. To find the step size,
the design variables are first perturbedwith an arbitrar-
ily small �", and the new valuesof the statevariablesthat
satisfy the state equations are determined. Next, the new

gradientr�F
�
� + �" ~�; �+ �"~�

�
is evaluated, followed by

r
2
�F (�; �) ~�. Then, the step size is determined with (22).

The Adjoint Equations

As stated earlier, the objective of the optimization pro-
cedure is to seek a descent direction and a step size in which
the designvariables can be changed so that the cost func-
tion is decreased. To determine the descent direction and the
stepsize, the gradient of the cost function with respect to the
design variablesr�F (given by (19)) must be evaluated. Ef-
ficient and accurate evaluation of the gradient ofF is one of
the important but difficult steps in any minimization scheme.
Equation(19) is not very useful for determiningthe gradi-
ent ofF because the efficient and accurate determination of
d�=d� generallyis difficult. However, the adjoint method
offers an elegant means for evaluating the gradient easily
and accurately. The derivation of the adjoint equations is
presented below.

Let the design variables be perturbed such that

�! � + " ~� (24)

where " ~� is the change in�; " and ~� are the step size
(magnitude) and direction, respectively, of the change in�.
Figure 2 shows the domain after the perturbation, where�U

and �L denote the upper and lower surfaces, respectively, of
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the new airfoil and�
 denotes the new domain. The shape
of the resulting airfoil�y

�U;�L and the corresponding potential
�� that satisfy the governingequation and its boundary con-
ditions in the new domaincan be written as

�y
�U;�L

= y
U;L

+ "~y
U;L (25)

and
�� = � + "~� (26)

where"~y represents the change in the airfoil shape and"~�

representsthecorrespondingchangein thepotential.We can
show from (13) that

~�
T
r�F

=

Z
U+L

2(� � �0)�y~yd� +

Z
U+L

(�� �0)
2 yx~yx

1 + y2x
d�

+

Z
U+L

2(�� �0)~�d�

(27)
where yx = dy=dx. The objective of this approach is to
eliminate those terms that have~�, where

~� =
d�

d�
~� (28)

From the governingequationand its boundaryconditions
(16), we can show that

div

�
r
~�
�
= 0 in 
 (29a)

r
~� �n = (~yr��t)x on the airfoil (29b)

r
~� �n =

~�

2�
r��n at the far �eld (29c)

~�
T
�

~�
B
= ~� along the cut (29d)

where
~� = ~�

T
t:e: �

~�
B
t:e: (30)

and t is the unit tangent.

If we introduce a Lagrange multiplier� and use (29a),
then (27) can be written as

~�T
r�F

=

Z
U+L

2(�� �0)�y~yd� +

Z
U+L

(�� �0)
2 yx~yx

1 + y2x
d�

+

Z
U+L

2(�� �0)~�d� +

ZZ



div

�
r
~�
�
�d


(31)
If we integrate by parts, the last integral can be written as

ZZ



div

�
r
~�
�
�d
 =

ZZ



div(r�)~�d


�

Z
�

�
�
r
~� �n

�
d� +

Z
�

(r� �n)~�d�

(32)
where the unit normaln points into the flow field
; d� is
an element on� , which is the path of integration around the
domain
 and can be expressed as

� = L+ U+ T+O +B (33)

If the integrals along� are split into different components
and substitutedinto (31), then we can write

~�
T
r�F

=

Z
U+L

2(� � �0)�y~yd� +

Z
U+L

(�� �0)
2 yx~yx

1 + y2x
d�

+

Z
U+L

2(�� �0)~�d� +

ZZ



div(r�)~�d


�

Z
U+L

�
�
r
~� �n

�
d� +

Z
U+L

(r� �n)~�d�

�

Z
T+B

�
�
r
~� �n

�
d� +

Z
T+B

(r� � n)~�d�

�

Z
O

�
�
r
~� �n

�
d� +

Z
O

(r� �n)~�d�

(34)

Becauser~� is continuous across the cut andn points in
oppositedirectionsalong the top and bottom boundariesof
the cut, we can write

Z
T+B

�
�
r
~� �n

�
d� =

Z
Cut

�
�
T
� �

B
��
r
~� �n

�
d� (35)

If we assume thatr� is continuous across the cut, then we
can write

Z
T+B

(r� �n)~�d� = ~�

Z
Cut

r� �nd� (36)
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If we use (35), (36), and (29b-d), then equation (34) can be
written as

~�
T
r�F

=

Z
U+L

2(� � �0)�y~yd� +

Z
U+L

(�� �0)
2 yx~yx

1 + y2x
d�

+

Z
U+L

2(�� �0)~�d� +

ZZ



div(r�)~�d


�

Z
U+L

�(~yr� � t)
x
d� +

Z
U+L

(r� �n)~�d�

�

Z
Cut

�
�
T
� �

B
��
r
~� �n

�
d� + ~�

Z
Cut

r� � nd�

�

~�

2�

Z
O

�(r� � n)d� +

Z
O

(r� �n)~�d�

(37)
If we substitute for~� from (30) and rearrange, then (37)
becomes

~�
T
r�F

=

Z
U+L

2(� � �0)�y~yd� +

Z
U+L

(�� �0)
2 yx~yx

1 + y2x
d�

�

Z
U+L

�(~yr� � t)
x
d� +

ZZ



div(r�)~�d


+

Z
U+L

[r� � n+ 2(� � �0)] ~�d�

+
�
~�
U
t:e: �

~�
L
t:e:

�0@Z
Cut

r� �nd� �
1

2�

Z
O

�r� �nd�

1
A

+

Z
O

(r� �n)~�d� �

Z
Cut

�
�
T
� �

B
��
r
~� �n

�
d�

(38)
We choose� such that

div(r�) = 0 in 


r� �n+ 2(�� �0)� ��(x� xt:e:) = 0 on L

r� �n+ 2(�� �0) + ��(x� xt:e:) = 0 on U

r� �n = 0 in the far �eld

�
T
� �

B
= 0 along the cut

(39)
where

� =

Z
Cut

r� �nd� �
1

2�

Z
O

�r� �nd� (40)

and � denotes the Dirac delta function. Equations (39) are
the adjoint equation and its boundary conditions (also called
the costate equations). These equations are similar to the
linearized state equations. The size of the system is the same
as the size of the state equations and can be solved with the
same technique used to solve the state equations.

Becausediv(r�) = 0 in 
, we obtain the following
from the divergence theorem:

Z
�

r� �nd� = 0 (41)

Therefore,so that (39) has a solution, we can show that

Z
U+L

(�� �0)d� � 0 (42)

Equation (16) clearly shows that a constant can be added to
�. We can choose this constant�c such that

Z
U+L

(� + �c � �0)d� = 0 (43)

Therefore,

�c = �

R
U+L

(�� �0)d�R
U+L

d�
(44)

The Gradient of F

If (39) is substituted into (38), then it reduces to

~�
T
r�F

=

Z
U+L

2(�� �0)�y~yd� +

Z
U+L

(�� �0)
2 yx~yx

1 + y2x
d�

�

Z
U+L

�(~yr� � t)xd�

(45)
If we integrate the last integral by parts, then we get

�

Z
U+L

�(~yr� � t)xd�

=

Z
U+L

~yr� � t�xd�+

Z
U+L

~yr� � t�
yxyxx

1 + y2x
d�

(46)

If (46) is substituted into (45), then we can write

~�
T
r�F

=

Z
U+L

2(�� �0)�y~yd� +

Z
U+L

(�� �0)
2 yx~yx

1 + y2x
d�

+

Z
U+L

~yr� � t�xd� +

Z
U+L

~yr� � t�
yxyxx

1 + y2x
d�

(47)
If we substitute for~y from (11), then (47) can be written as

~�
T
r�F =

KX
k=1

~�
U
k �

U
k +

KX
k=1

~�
L
k�

L
k (48)
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where

�U;Lk =

Z
U;L

(� � �0)
2 yx

1 + y2x
(fk)xd�

+

Z
U;L

�
2(���0)�y+r� � t�x+r� � t�

yxyxx

1+y2x

�
fkd�

(49)
Equations (49) are the components of the gradient ofF .
When� satisfies the state equations (16) and� satisfies the
costate equations (39), then the components of the gradient
of F canbe evaluatedwith (49). Becauser�F = 0 at the
minimum, we can clearly see that

�Uk = 0

�Lk = 0

)
for k = 1; 2; :::K (50)

A Design Strategy

Figure3 showsa typical design strategy. In this process,
at some initial conditions the state and adjoint equations are
solved,and the gradient ofF is computed. If the gradient is
equalto 0, then a minimum has been reached and the iteration
is terminated;otherwise,the new descentdirection ~� and

Relax state equation
Relax adjoint equation

2K

N

αF

∆

Compute 

Is =  0

No

Quit
Yes

Optimizer

α , φ , λ  0        0       0       

αF

∆

Compute  α , ε ~

+ ε ααnαn+1=
~

Fig. 3. A design strategy flowchart.

the step size" are computed, and the design variables are
updated. The iteration is repeated until the gradient vanishes.
The cost of this strategy can be estimated as follows. Let
the cost of solving the state equations be equal toK. The
cost of solving the adjoint equation is at most equal toK.
Let the number of design iterations required beN. Therefore,
the total cost of doing the optimal design is approximately
2KN with N, at best, equal to the number of design variables.
In practice, especially for nonlinear problems,N is many
times the number of design variables. A factor of 100 is not
unrealistic. One way to bring the total design cost down is
to reduce the magnitude ofK. One of the most practical and
proven ways of achieving this is by using multigrid. Here,
a multigrid scheme is used to relax the state and adjoint
equations. At the end of one or several multigrid cycles,
the optimizer is called and the design variables are updated.
In this process, the design variables are updated only on the
finest grid. A schematic of this strategy is shown in Fig. 4.

One multigrid cycle

OptimizerFine

Coarse

2h

4h

8h

h

Relax φ , λ

Relax φ , λ

Relax φ , λ

Relax φ , λ

Fig. 4. A multigrid strategy.

III. The One-ShotMethod

The One-Shotmethod goes one step further by embed-
ding the designprocesswithin the multigrid cycles. This
methodessentiallymakesN = 1. Thus, the cost of optimal
design is approximately equal to 2K. In this method, high
efficiencyis obtained by exploiting two key phenomena: the
ability of multigrid to efficiently reducehigh-frequencycom-
ponents of the error due to a perturbation and the nature of
propagationof perturbations in a flow field. These phenom-
ena are explained below.

Multigrid Efficiency

In any relaxation (smoothing) process, the high-
frequency error components of the space discretization op-
erator of the differential equation under consideration are
generally damped in a few iterations. The low-frequency
componentsare the slowestto be damped. Consider a one-
dimensional domain of lengthL discretized intoN cells of
uniform grid spacingh = L=N , where the grid index ranges
from 0 to N . This grid will be referred to as theh grid. If
we assume periodic boundary conditions, then the error at
the nth grid point can be written in Fourier series as

�n =

NX
j=�N

Aje
i�jn (51)
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whereAj is the amplitude of thejth harmonic andi =
p�1.

The phase angle� can be written as

�j =
j�

N
(52)

The phase angle covers the domain(��; �) in increments
of �=N . The value j�j = � corresponds to the highest
frequency that is visible on this grid, namely the frequency
of wavelength2h. If a coarse grid (H grid) is constructed by
removingeveryothergrid pointof theh grid, then the highest
frequencythatis visibleonthisgrid correspondsto j�j = �=2

(i.e., the frequencyof wavelength4h � 2H). Therefore, the
frequenciesthatcorrespondto �=2 < j�j � � andare visible
on the h grid cannotbe representedon the H grid. These
frequenciesare consideredto be high frequencies on theh
grid, andtherelaxationschemecandampthesefrequencies in
a few iterations.The remainingfrequenciesin the spectrum,
which correspondto 0 � j�j � �=2 and are well represented
on the H grid, are referredto as low frequencies on theh
grid. The frequencies that are visible on theH grid can also
be separated into high and low frequencies, based on how
well they are represented by the next coarsest grid. The high
frequenciesthat correspondto the H grid can be damped
quickly by a few iterations of the relaxation scheme on this
grid.

In themultigrid method,17,18 high efficiencyis obtained
by relaxing the discretizedequationon successivelycoarser
grids, where the high-frequency error components that cor-
respondto eachgrid are dampedefficiently. In the design
process,high efficiency is obtainedby changingonly those
design variables that produce high-frequency perturbations in
the flow field on any grid. Therefore, the basic premise of the
OneShotmethod, on any grid, is tomake changes in the de-
sign variables that produce high-frequency perturbationsin
the flow field.

The Effect of Airfoil Perturbation on the Flow Field

The other phenomenon that is exploited by theOne-
Shotmethod has to do with the way in which a disturbance
is propagated in a flow field. In a subsonic flow, for example,
a smooth perturbation is propagated through the entire flow
field and a high-frequency perturbation is felt only in a small
neighborhoodaroundthesourceof theperturbation.That is,
high-frequency components of the perturbation decay rapidly
awayfrom thesource.This phenomenonis illustrated in the
following analysis.

Consider the small-disturbance potential equation in the
half-space0 � y < 1; �1 < x < 1. If the flow is
incompressible, the governing equation is

r2
� = 0 (53)

and the boundary condition applied aty = 0 is

@�

@y
=

@f

@x
(54)

where f(x) is the shape of the boundary over which the
flow must be determined. If� + ~� is the potential due to a

change in shape tof + ~f , the governing equation for change
in potential ~� is

r2 ~� = 0 (55)

and the boundary condition aty = 0 is

@ ~�

@y
=

@ ~f

@x
(56)

Let
@ ~f

@x
= e

i!x (57)

where ! is the frequencyof the perturbation. A solution
to the governing equation(55) that satisfies the boundary
condition is

~� = e
�j!jy

e
i!x (58)

The magnitudeof ~� is��� ~���� = e
�j!jy (59)

Figure 5, which is the plot of (59) for a few select frequencies,

Fig. 5.
���~���� versus y.

shows that the region where~� is large becomesthinner as
the frequencyincreases.Let y� be a locationwhere ~� is less
than somesmall ". That is,���~�(!; y�)��� < " = e

�� (60)

If we substitutefor ~�, then

e�j!jy
�

= e�� (61)

Therefore,

y� =
� ln (")

j!j (62)

Equation (62) clearly shows that as the frequency of the
perturbation! increasesy� decreases. Table 1 showsy�
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for a few select frequencies when" = 10
�4. For the discrete

Table 1. y� Versus !

! 1/4 1/2 1 2 4

y� 27.6 13.8 6.9 3.5 1.7

problem, (59) can be written as

��� ~���� = e
�(j!jh)(y=h)

= e
�j�j(j�1)

(j = 1; 2; :::J + 1)

(63)
where�=J � � � � is the frequency scaled to the grid spac-
ing h. Figure 6 shows the response to different frequencies
for thediscrete problem. Table 2 shows the grid locationj�,
beyondwhich

���~���� � 10�4. It shows that the high-frequency
perturbations are significantly damped by about the fifth grid
point (j = 0 is the first grid point).

Fig. 6.
��� ~���� versus j.

Table 2. j� Versus �

� �=4 �=2 3�=4 �

j� 8.8 4.4 2.9 2.2

In the One-Shotmethod, a shape function is perturbed
on a grid where it produces high-frequency error compo-
nents. These errors penetrate only a small distance into the
flow field. Hence, they can be quickly damped by a few re-
laxations of the discrete equations in a small neighborhood
around the airfoil.

The Shape Functions

As presented earlier (section 3), the airfoil is represented
as follows:

y
U;L

=

KX
k=1

�
U;L
k

fk(x) (64)

where�Uk and �Lk are the design variables andfk are the
shape functions. As explained in the previous two sections, to
obtainhigh design efficiency, the changes in the design vari-
ables on a grid should produce nonsmooth (high-frequency)
perturbations in the flow field. This is achieved by using a
set of orthonormal functions as shape functions. Orthonor-
mal functions are increasingly oscillatory. Each of them is
assigned to a grid where a change in the amplitudes causes
nonsmoothperturbations in the flow field. Often, basis func-
tions that correspond to some known airfoil shape must be
used. If these functions are not orthonormal, then the cor-
responding orthonormal functions can be determined by a
Gram-Schmidt process. A Gram-Schmidt procedure for or-
thonormalizationcan be developedwith the property of or-
thonormal functions, namely,

1Z
0

fm(x)fn(x)dx = 0 (m 6= n)

1Z
0

f
2
m(x)dx = 1

(65)

Let gk(x) be the functions that are not orthonormal. First, the
orthogonal set�fk(x) is found from the following relations:

�f1(x) = g1(x)

�f2(x) = g2(x) + a21 �f1(x)

:

:

�fk(x) = gk(x) +

k�1X
m=1

akm �fm(x)

:

:

(66)

where

akm = �

1R
0

gk(x) �fm(x)dx

1R
0

�f2m(x)dx

(67)

Finally, the orthonormalfunctionsarefound by normalizing
�fk(x) as follows:

fk =
�fk(x)s

1R
0

�f2
k
(x)dx

(68)

The Gram-Schmidt process described above can be pro-
grammed in symbolic language to find the expressions for
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fk, or it can be implemented by numerical integration, in
which case the shape functions are defined as an array of
numbers.

As an example, consider the NACA 0012 airfoil, which
is definedby

y
U
=

4X
k=1

�kgk(x) (0 � x � 1)

y
L
= �yU

(69)

where�k and gk are given in Table 3. The NACA 0012
shape has been slightly modified to ensure that it closes at
the trailing edge.The same shape can be expressed in terms
of the orthonormalfunctionsas

y
U
=

4X
k=1

�kfk(x) (0 � x � 1)

y
L
= �yU

(70)

where the orthonormal functionsfk of the basis functions
and their corresponding amplitudes�k are given in Table 4.
The orthonormalshapefunctionsareshownin Fig. 7. Note
that the number of zeros infk is equal tok + 1.

Table 3. Shape Functions and
Amplitudes of NACA 0012

k �k gk

1 0:17814
p
x� x

2 0:10128 x(1 � x)

3 �0:10968 x2(1 � x)

4 0:06090 x3(1 � x)

Table 4. Orthonormal Shape Functions
and Amplitudes of NACA 0012

k �k � 10
4 fk

1 439:474 5:47723g1

2 28:2339 14:7573(g2 � 0:928571g1)

3 �5:85699 54:7884(g3 � 0:901236g2

+ 0:432099g1)

4 2:85283
213:472(g4 � 1:27406g3

+0:504011g2 � 0:164439g1)

Fig. 7. Orthonormal shape
functions of NACA 0012 airfoil.

The One-ShotDesign Strategy

In the One-Shotmethod, the optimizer is embedded
within the multigrid cycle as shown in Fig. 8. The de-
sign variablesareupdatedon a level wherethe correspond-
ing shape functions produce high-frequency error compo-
nents. In general, the low-frequencyshapefunctions are
updatedon coarselevels, and higher frequency functions
are updated on finer grids. For example, the design vari-
ables �U1 and �L1 are updated on the coarsest grid8h;
�U1 ; �

U

2 ; �U3 ; �U4 ; �L1 ; �
L

2 ; �L3 , and �L4 are updated on
the next finest grid4h. Some overlap of the design vari-
ablesis permitted. Thus,�U1 and�L1 are updated on grid4h
also. Noneof the designvariablesareupdatedon the finest
grid h. The cost of solving the state or the adjoint equations
on a coarse grid is only one-fourth of the cost of solving
them on the next finest grid. Because the shape functions are
perturbedonly on levels where they generate high-frequency
errors, a local relaxation around the airfoil is sufficient to
damp out the errors, which reduces computing costs. There-
fore, the overall cost of the design is dominated by the cost
required to solve the state and adjoint equations on the finest
grid. The total cost of the designprocessis approximately
two to threetimes that of one analysis.

One multigrid cycle

Fine

Coarse

2h

4h

8h

h

Relax φ , λ

Relax φ , λ

Relax φ , λ

Relax φ , λ

Update αU, L
1,2, 3, 4

Update αU, L
1

Fig. 8. The One-Shot strategy.
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The Discretization and Solution Procedure

The State Equations. The computationaldomain is
discretizedwith an O type of grid. The governing equation
and its boundaryconditionscast in curvilinear coordinates
arediscretizedwith the finite-volumeapproach.The Gauss-
Seidelline-relaxationschemeis usedto form the tridiagonal
systemsof equationsin bothcurvilinearcoordinatedirections.
Thesesystemsaresolvedwith the Thomasalgorithm. Note
that the tridiagonal systemis periodic in the direction that
is around the airfoil. A FAS multigrid schemeis used to
acceleratethe convergencerate of the solution. The FMG
processis usedto obtain a good initial solution on the finest
grid.

The Adjoint Equations. Theadjoint equations are dis-
cretizedandsolvedin thesamemannerasthe state equations.
As in thecaseof the state equations, a FAS multigrid scheme
andtheFMG processareusedto acceleratethe convergence
rate of the solution.

The Gradient of F. The gradient of the cost function
involves only quantitieson the airfoil. Thesequantitiesare
discretized in a manner that is consistent with the discretiza-
tion of the state and adjoint equations. The gradient is trans-
ferred to the coarse grid in a FAS manner.

Updating the Gr id. During the design process, the
grid is updatedby moving only the grid points close to
the airfoil and linearly decayingthe changeat the airfoil
in this neighborhood. The outer boundary of this region is
determinedas follows. Let

ymax = �max("~y) (73)

where� is an arbitrary constant;� = 10 in this study. Among
the grid lines that go around the airfoil, the one that is nearest
to theymax location is takento be the outer boundary of the
regionwithin which thegridsarechanged.Theentiregrid is
regenerated at the beginning of each FMG stage also. With
this approach, by the time the FMG process reaches the finest
grid, only a few lines around the airfoil must be moved.

IV. THE RESULTS

Test Case1.

As our first test problem, we recover the NACA 0012
airfoil shape using the potential distribution obtained from
the analysis of NACA 0012 at an angle of attack of0

o

and M
1

= 0 as the target potential�0. Figure 9 shows
the computedCp distribution obtained from the analysis run.
A five-level W-cycle multigrid with 128� 64 cells on the
finest grid was used. The FMG process was used to obtain
a good initial approximation for the finest grid. The analysis
converged to machine zero (< 10

�10) in 10 multigrid cycles.

The design run was similar to the analysis run. During
the design process, both the state and costate equations were
relaxed at any multigrid level. The shape functions used were
the orthonormal functions based on the NACA 0012 shape
functions. The design variables were distributed such that on

Fig. 9. Computed Cp distribution for NACA 0012.

the coarsest level (8� 4) only �U1 and �L1 were updated.
On the next finest level (16� 8), all the design variables
(�U;L

1;2;3;4 ) were updated.None of the design variables were
updated on the next three levels, including the finest level.
Thus, most of the designoverheadwas limited to the two
coarsestgrids. The FMG processwasusedto obtaina good
initial approximation of the shape for the finest grid. Figure
10showstheresultsof this run. Theresiduals of the state and
costateequationsandthegradientof thecostfunction reached
machine zero in 12 multigrid cycles. The cost function at
convergencewas equal to 3 � 10–13, which indicatesthat
NACA 0012 was indeedrecovered.

Fig. 10. Test case 1.

Test Case2.

For test case 2, we selected the airfoil FX 60–126/1,
a cambered airfoil whose coordinates are tabulated in Ref.
19. Figure 11 shows theCp distribution for this airfoil at
an angle of attack of0o andM

1
= 0. This airfoil is not

smooth, which is reflected in the computedCp distribution.
Usingthis solution as the target, we tried to recover the shape
with the NACA 0012 shape functions. Figure 12 shows the
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resulting shape. Although the designed shape did not fall
right on top of the target shape, the residuals of the state
and costateequationsand the gradientof the cost function
reachedmachinezero,which indicates that a minimum was
reached.The cost function reacheda valueof 6 � 10–9.

Fig. 11. Computed Cp distribution for FX 60–126/1.

Fig. 12. Test case 2.

Next, an experiment was done to see how well the
FX 60–126/1airfoil canberepresentedwith theNACA 0012
shapefunctions. Figure 13 showsthe result. The NACA
0012 shape functions clearly do a good job everywhere except
near the trailing edge. The reason that the optimum shape
in the previous experiment does not correspond to the shape
obtained from the shape fitting is not clear; one reason may be
the poor quality of the grid because the airfoil is not smooth.

Fig. 13. Shape fitting with
NACA 0012 shape functions.

Test Case 3.

A third test was done; in this case, the fitted airfoil was
used to generate the target potential. This shape is very close
to the FX 60–126/1 airfoil and is smooth because it is based
on smooth shape functions. The result of the design is shown
in fig. 14. As expected, the final shape fell on top of the
target shape. The residuals of the state and costate equations
and the gradient of the cost function are shown in fig. 15.

Fig. 14. Test case 3.

Fig. 15. Convergence history.

12



The Efficiency of One-Shot Method

Finally, the performanceof the One-Shotmethod with
respectto pure analysisis presented. The efficiency of a
designmethodis definedas the ratio of the central processing
unit (CPU) time that is required for the complete design
processtD to the CPU time that is required to do a single
analysistA. Figure 16 shows this ratiotD=tA plotted against
the numberof grid cells for the last test case. The figure
showsthatasthegrid becomefiner thecost of design drops in
comparisonwith the costof one analysis. For the finest grid
consideredhere,this ratio droppedbelow 4. The efficiencies
for the other caseswere similar.

Fig. 16. Efficiency of the One-Shot method.

V. Concluding Remarks

An efficient method for the designof optimal airfoil
shapeshasbeenpresentedin this paper.This method brings
the cost of the design process to the same order as that of the
analysisproblem. It offers significantpotentialin the design
of optimal aircraft configurations at a reasonable computer
cost. However, much work is still required before practical
use can be made of this method.
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